

Andreas Kunzendorf, Selchuk Hadzhaahmed, Stefan Berkenhoff, Till Meineke, 04.09.2023

Overview

Introduction			
Baseline model	Dummy Regressor		
1st model	Random Forest Regressor		
2nd model	Random Forest Regressor w/ engineered features		
3rd model	Lightgmb w/ engineered features		
Summary			

🔪 ML M

ML Model 2

Introduction: Urban Air Pollution Challenge - Air pollution by PM2.5

 Good
 Moderate
 Unhealthy for sensitive groups
 Unhealthy
 Very Unhealthy
 Hazardous
 https://aqicn.org/map/world/

 Intro
 Baseline
 ML Model 1
 ML Model 2
 ML Model 3
 Summary

The Data - Columns

> ML M

ML Model 2

The Data - Rows

- 1. For 35k entries for ~350 locations and ~3 months
- 2. High variety in quality, completeness and size of records per location
- 3. Hyperlocality vs "spaceview": Smallest dimension of a satellite is 1 x 1 km, whereas ground sensors measure for a very particular ground position of several meters

Baseline model: A starting point but not more

- Median value of PM2.5 particulate matter concentration over all cities and dates.
- PM_{2.5} = 50 mg/m³
- RMSE: 50.67

ML Model 2

The Target: Higher PM2.5 particle concentration is bad for the health

Intro

Baseline model: Data is skewed and resistant to scaling

Intro

Baseline

ML

ML Model 2

ML Model

Summary

The initial ML model on the given data performed surprisingly well

Feature engineering: Calculating Trends adds more information

based	on the given data	Trend based on time series		
	Location	Date	Temperature	Trend
	LG56B	01.02.2017	20°	0
	LG56B	02.02.2017	22°	+2
	LG56B	03.02.2017	21°	- 1
Trello	end per cation		Encodin over tin mo	g changes ne for the odel

Introducing Trend data improved the second model tremendously

Switching from Random Forest to LightGBM gives another boost

Even excluding ground sensor data performed better than the 2nd model (No windspeed, temperature etc.)

Summary

Key findings:

- Approximate prediction of air quality with satellite data is possible, but only rough estimations
- Feature engineering with time-based changes (trends) can have a positive effect on prediction

🔹 🔪 Ba

ML Mc

ML Model 2

ML Model

Summary

Potential Data product - how can the model be used?

- 1. Combine satellite data with available local weather data to predict PM2.5 particles in Africa
- 2. Early warning system for the population based on this predictions of the pollution levels (e.g. via app).
- 3. For a productification, use a rough classification (air harmful yes / no meaning concentration > 100)

Future work

- Test model predictions for unknown places
- Predict mean target over longer times (week, month)
- Build classification model (Good Hazardous)
- Hyperlocality vs "spaceview":
 - a. Smallest dimension of a satellite is 1 x 1 km
 - b. Ground sensors measures within meters
- Improve data basis
 - a. use more records with high air pollution
 - b. encoding geo locations in model

Summary

ML Model